3,794 research outputs found

    Applying hierarchical task analysis to medication administration errors

    Get PDF
    Medication use in hospitals is a complex process and is dependent on the successful interaction of health professionals functioning within different disciplines. Errors can occur at any one of the five main stages of prescribing, documenting, dispensing or preparation, administering and monitoring. The responsibility for the error is often placed on the nurse, as she or he is the last person in the drug administration chain whilst more pressing underlying causal factors remain unresolved. This paper demonstrates how hierarchical task analysis can be used to model drug administration and then uses the systematic human error reduction and prediction approach to predict which errors are likely to occur. The paper also puts forward design solutions to mitigate these errors

    A proof‐of‐principle study comparing barrier function and cell morphology in face and body skin

    Get PDF
    OBJECTIVE The purpose of this pilot in vivo study was to investigate corneocyte size and transepidermal water loss (TEWL) in facial cheek and volar forearm skin as a function of consecutive tape stripping. Changes in corneocyte size and transepidermal water loss (TEWL) were measured as a function of stratum corneum (SC) depth at both anatomical sites. To our knowledge, this is the first published quantitative comparison based on these parameters. This work complements our previously published studies on face skin barrier recovery at 24 h and 4 weeks post‐tape stripping [Gorcea et al., Skin Res. Technol., 19, 2013, e375‐e382; Gorcea et al., Int. J. Cosmet. Sci. 35, 2013, 250]. METHODS Transepidermal water loss in vivo measurements of forearm and facial skin sites were taken before tape stripping commenced (baseline) and after each tape was collected. Optical microscopy and image analysis techniques were employed to characterize corneocyte size as a function of skin depth (tape strip number) for both anatomical sites. RESULTS Transepidermal water loss increased significantly from baseline with sequential tape stripping at both anatomical skin sites. Volar forearm skin required approximately three times as many tapes to ‘damage’ the SC barrier (arbitrarily defined as twice baseline TEWL) compared to facial cheek skin demonstrating significant differences in barrier properties between cheeks and forearms (P < 0.05). Corneocyte size decreased significantly with depth for both sites (P < 0.001). Corneocytes from face skin were significantly smaller than corneocytes from volar forearm skin. CONCLUSION Statistically significant differences between facial and body skin stratum corneum cell morphology and transepidermal water loss were demonstrated and quantitatively measured as a function of tape stripping

    Chemical ultraviolet absorbers topically applied in a skin barrier mimetic formulation remain in the outer stratum corneum of porcine skin

    Get PDF
    The objective of the present study was to evaluate the fate of three chemical sunscreens, isoamyl p-methoxycinnamate (IPMC), diethylamino hydroxybenzoyl hexyl benzoate (DHHB), and bis-ethylhexylphenol methoxyphenyl triazine (BEMT), topically applied to mammalian skin from a skin barrier mimetic oil-in-water formulation. High Performance Liquid Chromatography (HPLC) methods were developed for the analysis of each molecule and validated. Franz cell permeation studies were conducted following application of finite doses of the formulations to excised porcine skin. A vehicle formulation containing no sunscreens was evaluated as a control. Permeation studies were conducted for 12 h after which full mass balance studies were carried out. Analysis of individual UV sunscreens was achieved with HPLC following application of the formulation to the skin with no interference from the vehicle components. No skin permeation of any of the chemical sunscreens was evident after 12 h. While sunscreens were detected in up to 12 tape strips taken from the SC, 87% or more of the applied doses recovered in the first 5 tape strips. When corrected for the amount of protein removed per tape strip this corresponded to a penetration depth in porcine stratum corneum of ∌1.7 ÎŒm. Mass balance studies indicated total recovery values were within accepted guidelines for cosmetic formulations. Overall, only superficial penetration into the SC was observed for each compound. These findings are consistent with the physicochemical properties of the selected UV absorbing molecules and their formulation into an ordered biomimetic barrier formulation thus support their intended use in topical consumer formulations designed to protect from UV exposure. To our knowledge this is the first report of depth profiling of chemical sunscreens in the SC that combines tape stripping and protein determination following in vitro Franz cell studies

    Topical delivery of 3-O-ethyl L-ascorbic acid from complex solvent systems

    Get PDF
    3-O-ethyl l-ascorbic acid (EA), an ether derivative of Vitamin C, is widely used in skincare formulations. Previously, we reported the effects of neat solvents on EA percutaneous absorption and observed that 0.6–7.5% of the applied EA was delivered through the skin over 24 h. In this work, we designed complex formulations using combinations of solvents that may act synergistically and examined their impact on EA permeation in porcine skin in vitro under finite dose conditions. Binary combinations of propylene glycol (PG) with propylene glycol monolaurate (PGML) were effective in enhancing skin permeation of EA compared with individual solvents (p 0.05). Addition of the volatile solvent isopropyl alcohol (IPA) to PG solutions also did not improve EA skin delivery compared with neat PG. Ternary solvent systems containing PG:PGML were subsequently prepared by the addition of a lipophilic solvent, either isopropyl myristate (IPM), medium-chain triglycerides (MCT) or isostearyl isostearate (ISIS). The optimum vehicle, PG:PGML:IPM, promoted up to 70.9% skin delivery of EA. The PG:PGML:ISIS vehicles also promoted EA permeation across the skin, but to a significantly lesser extent than the IPM-containing vehicles. No enhancement of EA delivery was noted for the PG:PGML:MCT mixtures. These results will inform the development of targeted formulations for EA in the future

    Layer by layer - Combining Monads

    Full text link
    We develop a method to incrementally construct programming languages. Our approach is categorical: each layer of the language is described as a monad. Our method either (i) concretely builds a distributive law between two monads, i.e. layers of the language, which then provides a monad structure to the composition of layers, or (ii) identifies precisely the algebraic obstacles to the existence of a distributive law and gives a best approximant language. The running example will involve three layers: a basic imperative language enriched first by adding non-determinism and then probabilistic choice. The first extension works seamlessly, but the second encounters an obstacle, which results in a best approximant language structurally very similar to the probabilistic network specification language ProbNetKAT

    3-O-ethyl-l-ascorbic acid: Characterisation and investigation of single solvent systems for delivery to the skin

    Get PDF
    L-ascorbic acid (AA), commonly known as vitamin C, has been widely used in topical formulations for many years as an antioxidant and anti-aging ingredient. However, the physicochemical properties of AA are not optimal for skin uptake and the molecule is also unstable, readily undergoing oxidation on exposure to air. The compound 3-o-ethyl-l-ascorbic acid (EA) has been developed as a stable vitamin C derivative and has been used in topical products. The aims of this work were to conduct a comprehensive characterisation of physicochemical properties of EA as well as to investigate the influence of various neat solvents on EA skin delivery. Nuclear magnetic resonance (NMR), mass spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to characterise the molecule. The pKa of the compound and the partition coefficient logP(o/w) were experimentally determined. A new HPLC method for analysis of the molecule was also developed and validated. A number of solvents for topical preparations were selected based on their wide use as excipients in topical formulations, their potential to act as skin penetration enhancers and their favourable safety profiles. The solubility and stability of EA was examined. Skin permeation of the molecule in full thickness porcine skin in vitro was investigated using Franz-type diffusion cells. The melting point, log P(o/w) value and pKa value of EA were determined to be 114.39 ± 0.5°C, -1.07 ± 0.03 and 7.72 ± 0.01 respectively. Skin penetration of EA was evident for the following vehicles 1,2 hexanediol (HEX), glycerol (GLY), propylene glycol (PG), 1,2 pentanediol (1-2P), isopropyl alcohol (IPA), propylene glycol monolaurate (PGML) and propylene glycol monocaprylate (PGMC). Skin uptake but no permeation through the skin was observed for TranscutolŸ (TC) and dipropylene glycol (DiPG), while no penetration was observed for the solvents 1,5 pentanediol (1-5P) and tripropylene glycol (TriPG). The findings of the permeation experiments confirm the potential of simple formulations to deliver EA to the skin. Studies are ongoing to identify complex vehicles for synergistic enhancement of EA skin penetration. To our knowledge this is the first study to conduct a comprehensive characterization of EA and examine its skin uptake and permeation properties in porcine skin

    Advancing tephrochronology as a global dating tool: Applications in volcanology, archaeology, and palaeoclimatic research

    Get PDF
    Layers of far-travelled volcanic ash (tephra) from explosive volcanic eruptions provide stratigraphic and numerical dating horizons in sedimentary and volcanic sequences. Such tephra layers may be dispersed over tens to thousands of kilometres from source, reaching far beyond individual volcanic regions. Tephrochronology is consequently a truly global dating tool, with applications increasingly widespread across a range of Quaternary and geoscience disciplines. This special issue of the International Focus Group on Tephrochronology and Volcanism (INTAV) showcases some of the many recent advances in tephrochronology, from methodological developments to diverse applications across volcanological, archaeological, and palaeoclimatological research

    In vitro permeation and disposition of niacinamide in silicone and porcine skin of skin barrier-mimetic formulations.

    Get PDF
    Niacinamide (NIA) is an amide form of vitamin B3 which is used in cosmetic formulations to improve various skin conditions and it has also been shown to increase stratum corneum thickness following repeated application. In this study, three doses (5, 20 and 50ÎŒl per cm(2)) of two NIA containing oil-in-water skin barrier-mimetic formulations were evaluated in silicone membrane and porcine ear skin and compared with a commercial control formulation. Permeation studies were conducted over 24h in Franz cells and at the end of the experiment membranes were washed and niacinamide was extracted. For the three doses, retention or deposition of NIA was generally higher in porcine skin compared with silicone membrane, consistent with the hydrophilic nature of the active. Despite the control containing a higher amount of active, comparable amounts of NIA were deposited in skin for all formulations for all doses; total skin absorption values (permeation and retention) of NIA were also comparable across all formulations. For infinite (50ÎŒL) and finite (5ÎŒL) doses the absolute permeation of NIA from the control formulation was significantly higher in porcine skin compared with both test formulations. This likely reflects differences in formulation components and/or presence of skin penetration enhancers in the formulations. Higher permeation for the 50 and 20ÎŒl dose was also evident in porcine skin compared with silicone membrane but the opposite is the case for the finite dose. The findings point to the critical importance of dose and occlusion when evaluating topical formulations in vitro and also the likelihood of exaggerated effects of excipients on permeation at infinite and pseudo-finite dose applications

    Reusing models and properties in the analysis of similar interactive devices

    Get PDF
    "Published online: 03 Apr. 2013"The paper is concerned with the comparative analysis of interactive devices. It compares two devices by checking a battery of template properties that are designed to explore important interface characteristics. The two devices are designed to support similar tasks in a clinical setting but differ in a number of respects as a result of judgements based on a range of considerations including software. Variations between designs are often relatively subtle and do not always become evident through even relatively thorough user testing. Notwithstanding their subtlety these differences may be important to the safety or usability of the device. The illustrated approach uses formal techniques to provide the analysis. This means that similar analysis can be applied systematically.This project was partly funded by the CHI+MED project: Multidisciplinary Computer Human Interaction Research for the design and safe use of interactive medical devices (UK EPSRC Grant EP/G059063/1). Patrick Oladimeji of Swansea University provided help with the Alaris pump and Chris Vincent of UCL provided access to the B. Braun simulation. We are grateful to reviewers for helpful comments
    • 

    corecore